The maximum size of 4-wise 2-intersecting and 4-wise 2-union families
نویسنده
چکیده
Let F be an n-uniform hypergraph on 2n vertices. Suppose that |F1∩F2∩F3∩F4| ≥ 2 and |F1∪F2∪F3∪ F4| ≤ n−2 holds for all F1,F2,F3,F4 ∈F . We prove that the size of F is at most (2n−4 n−2 ) for n sufficiently large.
منابع مشابه
The Maximum Size of 3-Wise Intersecting and 3-Wise Union Families
Let F be an n-uniform hypergraph on 2n vertices. Suppose that |F1 ∩ F2 ∩ F3| ≥ 1 and |F1 ∪ F2 ∪ F3| ≤ 2n− 1 holds for all F1, F2, F3 ∈ F . We prove that the size of F is at most ( 2n−2 n−1 ) .
متن کاملIntersecting Families of Finite Sets and Fixed-point-Free 2-Elements
We study the maximum cardinality of a pairwise-intersecting family of subsets of an n-set, or the size of the smallest set in such a family, under either of the assumptions that it is regular (as a hypergraph) or that it admits a transitive permutation group. Not surprisingly, results under the second assumption are stronger. We also give some results for 4-wise intersecting families under the ...
متن کاملMultiply-intersecting families
Intersection problems occupy an important place in the theory of finite sets. One of the central notions is that of a r-wise r-intersecting family, that is, a collection holds for all choices of 1 < il < < i, < m. What is the maximal size m = m(n, r, t) of a r-wise t-intersecting family? Taking all subsets containing a fixed t-element set shows that m(n, r, 1) > 2 "-' holds for all n 3 f 2 0. O...
متن کاملEKR type inequalities for 4-wise intersecting families
Let 1 ≤ t ≤ 7 be an integer and let F be a k-uniform hypergraph on n vertices. Suppose that |A∩B∩C∩D| ≥ t holds for all A,B,C,D ∈ F . Then we have |F | ≤ (n−t k−t ) if | k n − 2 |< ε holds for some ε > 0 and all n > n0(ε). We apply this result to get EKR type inequalities for “intersecting and union families” and “intersecting Sperner families.”
متن کاملWeighted Non-Trivial Multiply Intersecting Families
Let n,r and t be positive integers. A family F of subsets of [n]={1,2, . . . ,n} is called r-wise t-intersecting if |F1∩·· ·∩Fr|≥ t holds for all F1, . . . ,Fr ∈F . An r-wise 1-intersecting family is also called an r-wise intersecting family for short. An r-wise t-intersecting family F is called non-trivial if |⋂F∈F F |<t. Let us define the Brace–Daykin structure as follows. F BD = {F ⊂ [n] : |...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 27 شماره
صفحات -
تاریخ انتشار 2006